EE 505
Lecture 10

« Statistical Circuit Modeling



Review from previous lecture:
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Review from previous lecture:

Consider a resistor of width W and length L By
2 —[ L jz GliEF 2 L A=\\W-L L
Or T\l ) ® o1 T %rer *3
W W el YA
R W
Consider now the normalized resistance B <—‘—>
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It follows that
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The term on the right in [ ] is the ratio of two process parameters so define

the process parameter A, by the expression A = ORreE
R
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A is more convenient to use than both o and R_

Thus the normalized resistance is given by the expression
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Will term AR the “Pelgrom parameter” (though Pelgrom only presented results for MOS devices)




Review from previous lecture:

Amplifier Gain Accuracy
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Amp“ﬁer Gain Accuracy Review from previous lecture:

Many different ways to achieve a given gain with a given resistor area
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Which will have the best yield?



y String DAC Statistical Performance
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* |INL is of considerable interest
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. INL=Max(|INL,|), O<k<N-1
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R, « INL is difficult to characterize analytically so will focus on INL,
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Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian

Consider INL,= Vo 1(K) = Vg1 (K)
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String DAC Statistical Performance
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String DAC Statistical Performance
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If we do a Taylor’s series expansion of the reciprocal of the
denominator and eliminate second-order and higher terms it follows

that Note that INK, is a zero-mean multivariate Gaussian distribution
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String DAC Statistical Performance
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Since the resistors are identically distributed and the coefficients are not a
function of the index i, it follows that
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Since the index in the sum does not appear in the arguments, this simplifies to
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Note there is a nice closed-form expression for the INL, for a string DAC !!



String DAC Statistical Performance

INL, assumes a maximum variance at mid-code
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String DAC Statistical Performance

How about statistics for the INL?
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are Vevy Comp [ cated and closed form solutlons do not exist

INL is not zero-mean and not Gaussian



Current Steering DAC Statistical Characterization
Unary weighted
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Assume unary current source array and define 1,=0

k-1
Vour (k) ==R2_1, 1<k<N
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For notational conveknlience will normalize by —R to obtain
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Assume current sources are random variables with identical distributions
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Current Steering DAC Statistical Characterization
Unary weighted
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Current Steering DAC Statistical Characterization
Unary weighted
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Model the current sources as IJ.:INOM+IRj
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It can be shown that the nominal part cancels, thus
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This is a sum of uncorrelated random variables




Current Steering DAC Statistical Characterization

The variance of I, can be readily calculated Rl 4 S]} SlL S]} SNlL TD&
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Current Steering DAC Statistical Characterization
Unary weighted

As for the string DAC, the maximum INL,
occurs near mid-code at about k=N/2 thus
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And, as for the string DAC, the INL is an order statistic and thus a

closed-form solution does not exist
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Current Steering DAC Statistical Characterization

Binary Weighted
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The structure looks about the same as for the unary structure but now the
current sources are binary weighted
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Define the decimal equwalent of b, k, , by
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For notational convenience will normalize by —R to obtain
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Current Steering DAC Statistical Characterization

Binary Weighted
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Current Steering DAC Statistical Characterization
Binary Weighted

Assume bundled current sources are comprised of wh® Q40
unary current sources from same distribution e e
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Substituting the values for I, it can be shown that the nominal parts

cancel thus
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Current Steering DAC Statistical Characterization

Binary Weighted
This can be expressed as = @ @ @ @
y l\ L\ l\ l\ E&
INLb Zn: Z |: :| IRGk |
i=1 k=21 N-1 ILSBX

This is now a sum of uncorrelated random variables, thus
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Current Steering DAC Statistical Characterization

It can be shown that the maximum INL, occurs at
b=<011.....11111> or b=<100....0000>

Substituting b=<1000....000>
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Current Steering DAC Statistical Characterization
Binary Weighted
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Note this is the same result as obtained for the unary DAC

But closed form expressions do not exist for the INL of this DAC since the
INL is an order statistic



Statistical Modeling of Current Sources
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Simple Square-Law MOSFET Model Usually Adequate for static Statistical
Modeling

Assumption: Layout used to marginalize gradient effects, contact
resistance and drain/source resistance neglected

C..W
= 2OE (Vs Vi )

Random Variables: {u, Coyx, Vs W, L} Thus I, is a random variable

. : _ o I
From previous analysis, need: =2

IDN



Statistical Modeling of Current Sources
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Random Variables: {u, Coy, Viy, W, L} Thus I is a random variable

Will assume {y, Coy, V4, W, L } are uncorrelated
This is not true : Toy Is a random variable that affects both V,, and Cgy

This assumption is widely used and popularized by Pelgrom

It is also implicit in the statistical model available in simulators such as SPECTRE
Statistical information about T, often not available

Drenen and McAndrew (NXP) published several papers that point out limitations
Would be better to model physical parameters rather than model parameters but
more complicated

Statistical analysis tools at NXP probably have this right but not widely available
Assumption simplifies analysis considerably

Error from neglecting correlation is usually quite small but don’t know how small



Statistical Modeling of Current Sources

Model parameters are position dependent
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Statistical Modeling of Current Sources

Model parameters are position dependent
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Assume that model parameters can be modeled as a
position-weighted integral

Jp(x,y)dxdy
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Reasonably good assumption if current density is constant
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Statistical Modeling of Current Sources

Assume that model parameters can be modeled as a position-weighted integral

As seen for resistors, this model is not good if current density is not constant

uC., W 2
[T) I, = %(VGS - VTHl)
x y dxdy
V I - Vi + Voo
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W £¢ W
L
Vi ! Vi If V=1V, V=2V
Wy VTHEQ:1-5V

Note dramatically different current densities

But reasonably good assumption if current density is constant



Statistical Modeling of Current Sources
_HCW
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Model parameters characterized by following equations

M= My + Mg

VTH = VTHN + VTHR
COX = COXN +COXR
L=L, +L,

W =W, +W,

Neglecting random part of W and L which are usually less important
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Statistical Modeling of Current Sources
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This appears to be a highly nonlinear function of random variables !!

l,=

Will now linearize the relationship between |5 and the random variables
Since the random variables are small, we can do a Taylor’s series expansion
and truncate after first-order terms to obtain
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This is a linearization of I in the random variables pg, Coxgr, and Vg
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Could easily include Lg and Wy, but usually not important unless lots of perimeter



Statistical Modeling of Current Sources
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Statistical Modeling of Current Sources
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It will be assumed that -2 A
(will discuss assumption later) PR \WL

2 Az, where A ,Acox. Ao are Pelgrom
Cow WL process parameters

Define
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Statistical Modeling of Current Sources
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Gate area: A=WL

- Standard deviation decreases with \/a

« Large Vg reduces standard deviation

» Operating near cutoff results in large mismatch

» Often threshold voltage variations dominate mismatch
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Stay Safe and Stay Healthy !







